Search results

1 – 1 of 1
Article
Publication date: 31 May 2011

S. Thirunavukkarasu, B.P.C. Rao, G.K. Sharma, Viswa Chaithanya, C. Babu Rao, T. Jayakumar, Baldev Raj, Aravinda Pai, T.K. Mitra and Pandurang Jadhav

Development of non‐destructive methodology for detection of arc strike, spatter and fusion type of welding defects which may form on steam generator (SG) tubes that are in close…

Abstract

Purpose

Development of non‐destructive methodology for detection of arc strike, spatter and fusion type of welding defects which may form on steam generator (SG) tubes that are in close proximity to the circumferential shell welds. Such defects, especially fusion‐type defects, are detrimental to the structural integrity of the SG. This paper aims to focus on this problem.

Design/methodology/approach

This paper presents a new methodology for non‐destructive detection of arc strike, spatter and fusion type of welding defects. This methodology uses remote field eddy current (RFEC) ultrasonic non‐destructive techniques and K‐means clustering.

Findings

Distinctly different RFEC signals have been observed for the three types of defects and this information has been effectively utilized for automated identification of weld fusion which produces two back‐wall echoes in ultrasonic A‐scan signals. The methodology can readily distinguish fusion‐type defect from arc strike and spatter type of defects.

Originality/value

The methodology is unique as there is no standard guideline for non‐destructive evaluation of peripheral tubes after shell welding to detect arc strike, spatter and fusion type of welding defects.

Details

International Journal of Structural Integrity, vol. 2 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 1 of 1